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ABSTRACT 

Soil test-based fertility management has been one of the effective tools for increasing 

productivity of agricultural soils that have a high degree of spatial variability. Changes in land 

use and land cover are important to the study of global environmental change issues. Among 

these issues are soil fertility depletion and management. Many times, stakeholders and policy 

makers overlook this issue when designing and implementing policies for land restoration and 

sustainable management. Nutrient pattern availability and distribution need to be known so as 

to determine factors that contribute to their depletion. An alternative and promising approach 

to our traditional analytical method which has become a vital tool in most decision making 

processes is the use of Geographic Information System (GIS) analytical tools. GIS based soil 

fertility maps outline a cost effective option for implementing improved nutrient management 

in large tracts. With the incorporation of this method, agricultural areas with very high or low 

nutrient loadings can easily be determined to enable the development of appropriate and 

economically sound management recommendations. The main goal of this study was to 

develop georeferenced soil fertility maps showing distributions of soil nutrients and their 

spatial variability. The spatial variability was assessed using soil fertility index (SFI). 

Assessment of nutrient distribution and trend patterns were estimated before the development 

of nutrient distribution surface maps. Also, minimum soil fertility indicators (MSFI) were 

integrated into SFI and then used in the development of probability threshold maps. 

Laboratory analyses of soil samples were used to estimate the composition of soil fertility 

indicators.  The following MSFI were determined: total soil Carbon (Ctot) and Nitrogen 

(Ntot), soil KCl extractable N ions (NH4
+
-N and NO3

-
-N), soil pH, biomass C (MICc), 

temperature and rainfall, metabolic quotient (qCO2) and soil moisture content.  Models for 
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soil fertility distribution were then applied to the data to derive fertility indicators for 

mapping. In addition, geostatistical analysis was applied to all MSFI with land use and land 

cover (LULC) data in mind. By computing SFI from sampled sites, SFI revealed the pattern 

of nutrient distribution in each measured unit. SFI values were then used to develop the 

choropleth maps and threshold probability maps in making recommendations on soil spatial 

variability in fertility management. 
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1 INTRODUCTION 

 

Research institutions like the Council for Scientific and Industrial Research – Soil Research 

Institution (CSIR-SRI) in Ghana and other similar institutions in Africa acknowledge the 

importance of soil fertility management, for addressing soil fertility depletion and increasing 

food productivity in Africa. 

 

Soil fertility management aims at integrating a set of practices of which the combined use of 

organic inputs and fertilizers form the backbone (Vanlauwe et al., 2010). This is particularly 

important in sub-Saharan Africa where soil fertility depletion has long been recognized as the 

major contributor to food insecurity (Sanchez, 2002). Organic inputs have been used as major 

nutrient sources but their effectiveness in supplying nutrients to meet crop demands has been 

insufficient, mainly because they are available in low quantities, are usually of low quality 

(Giller, Cadisch & Mugwira, 1998) and are expensive to use. Thus, the combined use of 

organic inputs with fertilizers offers potential to increase crop yields associated with soil 

fertility improvement. However, to fully exploit the potential benefits and optimize nutrient 

use efficiency of the combined applications requires a better understanding of the underlying 

mechanisms, spatial variation of nutrient pattern, soil processes and their sustainability in the 

long term.  

 

For normal plant growth and completion of their life cycle, at least 16 nutrient elements (Ray 

& Tucker, 1999) are required. Non-mineral elements are used in large quantities and some 

other elements are taken up by plants only in mineral form from the soil or by fertilizer 

application. Primary nutrients are needed in relatively large quantities (such as nitrogen, 

phosphorus, and potassium) and these are the ones that are most frequently supplied to plants 

by fertilizer application (Government of Alberta, 1998). 

 

Modern GIS trends, which have now become one of the best spatio-analytical tools, can be 

incorporated into soil fertility management and assessment (Grinderud, 2009). GIS has come 

to be associated more specifically with the gauging of interactions between the environment 

and contributing factors.  

 

The purpose of producing a soil fertility map is to determine plant nutrient availability and 

distribution and the pattern of nutrient depletion in the project area. Soil fertility maps which 

are developed and utilized with the capabilities of GIS can solve issues regarding sustainable 

intensification of food security, poverty reduction and proper farming systems for the 

rehabilitation of degraded soil nutrients as they may allow farmers to improve on site specific 

fertility management and also know where resources need to be invested in. However, good 

nutrient balance is important at the field and farm level, which will ensure sustainability and 

diversification of agriculture in Africa. Soil organic matter and other fertility indexes have a 

major impact on our natural resources (Manlay, Feller & Swift, 2007). GIS based soil fertility 

maps can be used to develop solutions for natural resource management issues such as urban 

planning, soil erosion, soil degradation, desertification and water quality assessments 

(Tomlinson, 1987).  

 

This project sought to make georeferenced soil fertility maps to determine nutrient availability 

and distribution in terms of spatial variability. High and low nutrient loadings can easily be 

determined with soil fertility maps, aiding the farmer in implementing appropriate land 

management practices. However, in assessing spatial variability of soil properties using SFI, 

trend patterns that existed in the dataset were assessed before the development of nutrient 
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distribution maps. Hence, MSFI was then integrated into SFI in estimating the threshold value 

for developing the final probability threshold maps.  

Geostatistical analysis was used in assessing the spatial variability and distribution of soil 

nutrients and microbial activity, both factors representing the soil fertility status.  The 

importance of soil sampling methods in representing nutrient spatial variability within a given 

field was assessed by studying two sampling methods: systematic sampling and a random 

sampling scheme. 

 

1.1 Project justification 

 

In the Ghanaian context, there seems to be little or no effort to use the capabilities of GIS in 

soil fertility studies. Continual practises, especially cultivation of deforested land, may rapidly 

diminish soil quality to support our farming systems. Low agricultural productivity lies at the 

heart of continued widespread hunger and poverty in Africa (Haggblade & Tembo, 2003). 

“Among all developing regions, only in Africa has agricultural productivity growth failed to 

keep pace with population over the past five decades” (Haggblade & Tembo, 2003, pp. 1) and 

roughly two-thirds of Africa’s poor work primarily in agriculture (International Food Policy 

Research Institute, 2004). Yet their land and labour productivity remain the lowest in the 

world. 

 

Increasing agricultural productivity by incorporating good nutrient balance management 

offers a potential powerful tool for reducing poverty in Africa (Diao, Headey & Johnson, 

2008; Mitchell, 2008). “Available estimates of poverty elasticities suggest that every 1 

percent increase in agricultural income per capita reduces the number of dollar-a-day poor by 

between 0.6 and 1.8 percent, roughly 50% more than from comparable income gains in 

manufacturing or services” (Haggblade & Tembo, 2003, p. 2). Indeed, the New Partnership 

for Africa’s Development (NEPAD) has identified agricultural-led development as a 

fundamental way to mitigating hunger and poverty, generate economic growth, reduce the 

burden of food imports and open the way to an expansion of exports (Staatz & Dembele, 

2008). Furthermore, Forum for Agricultural Research in Africa (FARA) with its member sub 

regional organizations (SRO) has also developed a vision for African agricultural research 

which calls for 6% annual growth in agricultural productivity (Bationo et al., 2004).  

 

Institutions in Africa have incorporated programmes and institutional linkages so as to give 

priorities to agriculture with the aim of improving food security for the most vulnerable, 

particularly women. Women being the main farmers in subsistence farming usually produce 

food crops, while men produce export and cash crops. However, about 70-80% of the 

domestic food supply is mainly produced by women and about 46% of farmlands are also 

worked by women (Gladwin, 2002). Small holder farming is seen beyond monetary returns 

and has posed enormous stress on poor smallholder farmers and hence contributes to nutrient 

depletion (Haileslassie, Priess, Veldkamp, Teketay & Lesschen, 2005). Generally, men 

produce export and cash crops which have high yield and production compared with women 

whose annual yield and food production is quite low and lower than the green revolution 

standards (Gladwin, 2002). This study, however, is focused on spatial variability in soil 

fertility studies by producing soil fertility maps that can help farmers; hence map production 

is evaluated by different sampling methods in mapping these soil fertility indicators. 

 

It is envisaged that, upon completion of this project, a benchmark and a soil fertility data 

repository can be obtained to give more information on the current and spatial variability of 
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soil nutrients, thereby assisting small-holder farmers to improve the soil fertility status of their 

lands. 

 

Calculated soil fertility indexes (SFI) have been used as an estimation of spatial variability in 

soil measurements in soil fertility studies (Andrews, Karlen & Cambardella, 2004). A high 

SFI value of 1 indicates that the spatial variability of a single measurement is high while if it 

is below 1 it is an indication of low spatial variability (Mukashema, 2007). As SFI varies in 

both space and time, sustainable soil fertility recommendations and management must be 

approached from both an agricultural and environmental viewpoint so as to depict minimal 

soil fertility indicators (MSFI).  Soil MSFIs are carefully chosen soil measurements, in this 

case geochemical and biological soil measurements, representing soil fertility status (Romel 

& Wilfredo, 2010). The MSFI appropriate GIS-based georeferenced soil fertility maps have 

been identified as one of the most important drivers of increasing and sustaining agricultural 

productivity that is vulnerable to climate change (Grinderud, 2009). However, most of the on-

going programmes lack this component and this has been the reason why this project is been 

implemented. 

 

In the Ghanaian context, information on soil fertility maps for local communities is largely 

absent where greater decisions and implementation of agricultural activities is needed. Where 

information does exist, the traditional methods used to collate and communicate this 

information represent a significant obstacle to sustainable agriculture. With the development 

of GIS maps showing the distribution of soil nutrients and their spatial variability, land users 

and farmers can evaluate high and low nutrient distribution within their fields, enabling them 

to choose the appropriate land management practice (e.g. fertiliser type, application time and 

concentration as well as the most suitable crop type to harvest). 

 

1.2 Proposed strategy to solve problems 

 

The project was implemented as a case study at Hvanneyri, where soil fertility indicators were 

investigated (Fig. 1). The soil type of the research area had previously been classified as 

Histic Andosol (Arnalds, 2004; Guicharnaud, 2002), which is representative of Icelandic 

pastureland (Guicharnaud, 2010). The mean annual precipitation at Hvanneyri is 874 mm 

(data obtained from the Icelandic Meteorological Office).  
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Fig. 1. Location map of Iceland showing the location of the study area with sampling points. 

 

In order to improve agricultural lands and their productivity, it was essential to find the best 

sampling scheme to be able to map soil fertility and to show the best nutrient and soil 

microbial activity distribution within the fields. As already mentioned a SFI was estimated 

according to Mukashema (2007) to assess spatial variability of soil measurements obtained 

from sampling a single field with two different sampling schemes. Table 1 displays parameter 

thresholds used to estimate SFIs. The MSFIs used in this study were chosen because of their 

sensitivity to changes in soil management, perturbation and input in the soil system.  They are 

likewise commonly used in studying soil nutrient status (Myint, Thongthap & Eiumno, 1997). 

The parameters used in this study were: 

 

I. Soil pH: it is an indicator of the acidity or alkalinity of soil which controls the mobility 

and hence the availability of soil nutrients (Amacher et al., 2007). 

II. Total organic carbon (Ctot) and total organic nitrogen (Ntot): these components have a 

greater effect on soil fertility because greater Ctot and Ntot improve the carbon cycle 

and nitrogen cycle respectively which increases the cation exchange capacity and 

water holding capacity of the soil and hence results in greater soil fertility. 

III. Potassium Chloride (KCl) extractable NH4
+
-N and NO3

-
-N: quantifiers of plant 

available soil inorganic nitrogen which can be a guide to fertilizer application (Brooks, 

Williams & Schmidt, 1998; Evans, 2001). 
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IV. Soil microbial biomass C (MICc): is an important indicator of soil health because it’s 

an early indicator of changes in the total organic matter and estimates the readily 

available C for soil microbes (Sparling, Pankhurst, Doube & Gupta, 1997). 

V. The soil metabolic quotient, qCO2: is an indicator of biodiversity; the greater the 

metabolic quotient the healthier the soil and, as a consequence, greater soil fertility 

(Mäder et al., 2002). 

VI. C:N ratio: a rising C:N ratio indicates low heterotrophic activity in soils and is thereby 

a vital indicator in estimating the soil fertility depletion index (Van Miegroet, Johnson 

& Cole, 1990).  

VII. Temperature and rainfall: these parameters were used because they are a major 

contributor to soil formation and microbial activities (Dalal & Mayer, 1986; Young et 

al., 1998). Also, they affect many chemical actions in the soil and its environment.  

 

Table 1. Threshold values of MSFI used to develop scores and classes for integrating MSFI 

into SFI (adapted from Amacher, O'Neil, & Perry, 2007).  

 

Data used in this study were obtained from Guicharnaud (2010).  Soil sampling was done by a 

systematic (w pattern) method to ensure adequate representation of the spatial variability of 

soil nutrients on a regular grid or transects such as a “W” sampling pattern (Fig. 2, n = 30) in 

site specific farming (Ayoubi, Zamani & Khormali, 2007; Losey, Allee, Zbarsky, Waldron & 

Shields, 2003), and random sampling (Fig. 2, n = 30) to adequately ensure spatial variability 

of soil properties and also cover the entire study area with the inclusion of all sample 

individuals (Stolte et al., 2003). The two sampling schemes were used to evaluate whether 

different sampling methods produce different SFIs as well as which sampling scheme 

indicates the maximum spatial variability.  

 

With the use of geostatistical analysis in developing the SFI maps, MSFIs were classified into 

classes so as to combine site-specific parameters of different variance and units into similar 

classes from different threshold values. The classes obtained based on threshold values were 

based on Table 1. 

 
Lowest Low Moderately High Extreme 

Score / Class 0.2 0.4 0.6 0.8 1 

pH <4 4 – 4.5 5 - 5.5 5.5 – 6 6 - 7.5 

Rainfall mm <400 400 – 500 600 - 1000 1000 - 1500 >1500 

C:N Ratio >8 8 – 12 12 - 16 >16 >25 

TOC % 0 < 1 1 - 5 > 5 - 

C % < 1 1 – 3 3 - 6 6 – 12 >12 

N % 0 < 0.1 0.1 – 0.5 > 0.5 - 
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Fig. 2. Study area showing both systematic and random sampling points within research site 

boundary. 

 

 

2 LITERATURE REVIEW 

 

2.1 Methods of studying and mapping spatial variability of soil nutrients and microbial 

activity in relation to soil fertility 

 

Maintaining soil fertility, a factor determining plant soil nutrient availability, can be a major 

challenge in terms of sustainable agriculture.  Depletion of soil fertility decreases the soil 

productivity and crop production (Lal, 2008). Maintaining soil fertility is therefore of great 

importance in the case of food production, both on the national and international scale 

(Rosegrant, Paisner, Meijer & Witcover, 2001). Sustainable soil management includes such 

appropriate soil management practices as appropriate fertilizer application, time of harvest, 

irrigation and crop type (Place, Barrett, Freeman, Ramisch & Vanlauwe, 2003).   

 

Geo-statistical tools, like Geographical Information Systems (GIS), have been widely used in 

the literature for producing soil fertility maps (Mueller, Pierce, Schabenberger & Warncke, 

2001; Mulla, 1991; Webster & Mcbratney, 1987). There are, however, many factors affecting 

the spatial variability of data which should be taken into consideration when mapping soil 

fertility status, such the number (Mueller, et al., 2001) and time (Corstanje, Reddy, Prenger, 

Newman & Ogram, 2007) of sampling, distance between sampling points (Röver & Kaiser, 

1999), land management (Cambardella et al., 1994) and different sampling schemes (Tan & 

Lal, 2005). Indeed, soil spatial variability has been studied (Castrignano, Goovaerts, Lulli & 

Bragato, 2000) but it is still difficult to obtain a perfect spatial distribution of soil variability.  

 

With several papers aiming to come up with the best statistical methods of analysing, 

sampling and mapping spatial data, the effect of sampling schemes on soil modelling (Scull & 

Okin, 2007; Wang & Qi, 1998) was studied. Scull & Okin, (2007) and Wang & Qi (1998) 

concluded that regular grid sampling accounted for better spatial variability than did random 

sampling. Quantitative assessment has identified and reported quite often in the literature 

(Berterretche et al., 2005; Hengl, Heuvelink & Rossiter, 2007). Nevertheless, stratified 

sampling has also been found to reduce spatial variability uncertainties and it has been 
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concluded that it is more effective than a random sampling scheme (Rodeghiero & Cescatti, 

2008). Additionally, differences have been identified in interpolated maps from different 

spatial datasets (Wu, Wu, Luo, Zhang & Teng, 2008) and Guicharnaud (2010) also concluded 

that the way in which soil samples are collected affects the variability of soil parameters. 

These studies however conclude that transect methods of sampling depicted a better 

representation of spatial variability than random sampling. Last but not least, random 

sampling was also stated to be a limiting factor in sampling density when bias is introduced in 

parameter estimation (Scull & Okin, 2007).  

 

To put spatial and temporal studies of measured parameters into context, interpretation of soil 

properties are relied on in the survey conducted and topological and geological features 

assessments (Guicharnaud, 2010). An integrated SFI obtained from a scored MSFI as shown 

in Table 1 was used as an estimation of quantitative soil quality evaluation (Andrews, et al., 

2004) in developing soil management practices. Andrews et al, (2004) concluded that SFI was 

a useful tool to move resource management beyond changes in productivity. In addition, 

Mukashema (2007) used SFI as an index to quantify the response of soil fertility on human 

induced activities and concluded that SFI reasonably interpreted a complex data set with 

conflicting trends as a result of irregular change in CLORPT (climatic, organism, relief, 

parent material and time) factors. However, studies on SFI has been undertaken on soil 

sampling methods (Ayoubi, et al., 2007; Scull & Okin, 2007; Stolte, et al., 2003) but studies 

on how different sampling methods affect the estimation of SFI are rare.  

 

The success of a variable rate technology (VRT) (Sawyer, 1994) depends largely on the 

quality of fertility management maps. GIS techniques using linear regression models (Gessler, 

McKenzie & Ryan, 1995) between maps of terrain attributes and soil parameters was based 

on the early applications in spatial data analysis. CLORPT techniques (McBratney, Odeh, 

Bishop, Dunbar & Shatar, 2000) were later developed as a technique and used in geostatistical 

analysis, which have also been used by Mukashema (2007). However, a number of GIS 

interpolation techniques have been used in studying and mapping spatial variability of soil 

nutrients which incorporated kriging, co-kriging and regression methods (Hengl, Heuvelink & 

Stein, 2004; McBratney et al., 2000). Hengl et al. (2004) stated that this path of analysis has 

shown to be more attractive and concluded that regression-kriging used for spatial prediction 

of soil variables improves prediction efficiency and ensured relative normality of residuals 

and predictors, but with the comment that earlier on it was stated that regression-kriging is 

more complex and can result in worse results estimation than ordinary kriging if misused 

(Goovaerts, 1999). This has made the development of an automated generic model unrealistic 

(Hengl et al., 2004). 

 

2.2 Scene of setting 

 

2.2.1 Iceland and its climatic conditions 

 

Iceland, a European Island country in the north Atlantic ocean on the Mid-Atlantic Ridge and 

composed of both the American and European plates is situated between 63°23’N and 

66°32’N latitude and 13°30’W and 24°32’W longitude (Einarsson, 1984), giving a total area 

of about 103,000 km
2
. Iceland is volcanically and geologically active with its interior mainly 

consisting of a plateau characterised by sand fields, mountains, with glaciers covering about 

11% of the island’s landmass. The climate in Iceland’s lowlands is temperate despite the high 

latitude just below the Arctic Circle (Guicharnaud, 2010) with permafrost in the interior 

regions. The weather conditions of Iceland are very variable and sometimes unpredictable 
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with strong winds. Annual precipitation ranges from 400 mm north of the Vatnajökull Glacier 

to 4000 mm in the southeast of the country (Einarsson, 1984). Annual mean temperature 

ranges from about -8 to 2°C in the highlands and 2 to 6°C in the lowlands (Einarsson, 1984, 

1989). Also, there are about 9 months of cold weather which limits the length of growing 

periods to about 100 to 130 days (Guicharnaud, 2010). 

 

2.2.2 Soils of Iceland 

 

Soils developed in Iceland are mainly formed by the weathering of volcanic ash (Oelkers & 

Gislason, 2001) and are classified as Andosols (Stoops, Gérard & Arnalds, 2008; IUSS 

Working Group WRB, 2006). The parent material for Andosols is volcanic glass and ejecta 

(IUSS Working Group WRB, 2006). Andosols are generally considered to be fertile soil 

because of the rapid weathering of volcanic tephra releasing nutrients. According to the IUSS 

Working Group WRB (2006), Andosols are easy to cultivate due to their high water holding 

capacity and their low bulk density (<0.9 gm/cm
3
) (Arnalds, Hallmark & Wilding, 1995) and 

thus support good plant root formation. Six main soil types have been identified in Iceland 

(Arnalds, 2004): Gleyic Andosols, Brown Andosols, Histosols, Histic Andosols, Vitrisols and 

Leptosols.  

 

2.3 GIS 

 

GIS is an acronym for Geographic Information System. GIS is a set of computer hardware, 

software and staff system for the acquisition, storage, analysis and display of geographically 

referenced geospatial data (Grinderud, 2009). Currently, it is one of the best spatio-analytical 

tools used in many decision making processes (Grinderud, 2009). 

To ensure effectiveness, components (hardware, software and personnel) need to be critically 

selected and the right georeferenced data used. Also reliable relational oriented database 

system needs to be built for use in analysis with the incorporation of a purpose, with the 

objectives and justification for using GIS as equally important as the components.  

 

2.4 GIS and soil fertility assessments 

 

The advent of Global Positioning System (GPS) and GIS has made measurements of spatial 

variability of soil properties easy (Shujuan, Yong & Hui, 2003). GIS, spatio-analytical 

capabilities, has been fairly incorporated into most decision making processes in the 

developing and developed countries. It is now used for mapping resources, map production 

and environmental resource modelling (Mitas & Mitasova, 1999).  Its ability to catalogue and 

retrieve information has made soil fertility studies easier. Spatial variation problems are now 

easier to handle. 

 

 

3 MATERIALS AND METHODOLOGY 

 

3.1 Research area 

 

This project was implemented as a case study at Hvanneyri, where soil fertility indicators 

were investigated. As shown in Figure 1, Hvanneyri is situated in Borgarfjörður, Iceland, at 

64° 34' 0" North and 21° 46' 0" West. The site consisted of a 1 hectare pasture field with the 

slope not exceeding 2°. According to Guicharnaud (2010), GPS co-ordinates were taken 

around the study area so as to aid the development of maps. The GPS points were taken 
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according to the Islands Network 1993 (ISN93) (GeoRepository, 2003). Figure 3 indicates 

how various stages in the project methods were executed. 

  

Fig. 3. Methodological flow chart showing a summary of MSFI and SFI change, mapping and 

evaluation in various stages of project. 
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3.2 Method of data acquisition 

 

Soil survey and sampling were done by Guicharnaud (2010). Soil samples were taken from 

the top 0 – 15 cm at the end of April in 2007. The same area was sampled by (i) systematic (w 

pattern) sampling in a ‘W’ shaped pattern, (ii) randomised sampling as shown in Figure 2, and 

(iii) soil bulking on a regional scale. The sampling point separation distance was about 7 m in 

random sampling whilst systematic sampling showed a sampling point separation distance of 

2.8 m across transects and 4 m along transects (Guicharnaud, 2010).  

 

3.3 Minimum soil fertility indicators analysis 

 

Descriptive statistics (mean, median, standard deviation, range and sample variance) were 

used to explore the data for anomalies and describe their distribution. Since spatial variability 

was evaluated based on two sampling methods (systematic and randomised), one-way 

analyses of variance (ANOVA) were performed on the fertility indicators to know whether 

they differed statistically between the two sampling schemes. An estimator of spatial 

variability of soil properties was further estimated from scores of each MSFI (in this case 

SFI). The Coefficient of Variation (CV) depicted the normalized dispersion of each MSFI and 

how values were spatially varied in the two sampling schemes. 

Furthermore, a t-test (two samples-assuming equal variances) was then applied to the data to 

estimate the equality of the population means that underlay each sample (using Microsoft 

Excel 2010) so as to determine whether the two samples were likely to have come from 

distributions with equal population means. All levels of significance were expressed as p ≤ 

0.05. To finally develop the SFI, Pearson’s correlation was used to examine the degree of 

association between the MSFI within the sampling schemes, either estimated as a positive or 

an inverse association.  

 

3.4 Development of soil fertility index 

 

Since soil fertility is variable in time and space, it was important to capture the spatial 

variability of the indicators used in estimating the SFI (Mukashema, 2007). In doing so it was 

prudent to assign classes to each indicator based on the threshold ranges of the topsoil 

properties of Icelandic soils.  

This made it possible to transform the MSFI values into score values (probability value) so as 

to combine the different MSFIs of different values into similar classes (Mukashema, 2007). 

Due to the huge amount of data, a probabilistic model (Ribeiro Jr & Diggle, 2001) was then 

applied in data analyses. Figure 4 shows the summaries of steps used in the development of 

the SFI.  
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Fig. 4. Flow chart diagram for the development of SFI, adapted from Andrews et al. (2004). 

Detailed description of SFI can be viewed in Table 1. 

 

MSFIs were transformed into classes as indicated in Table 1 with scores ranging from 0 to 1 

(Andrews et al., 2004) indicating five classes for the development of surface maps. For this 

reason, site-specific parameters of different variances and units with too many controlling 

factors were difficult to identify exact probability values for every possible combination into 

the SFI. To circumvent this challenge it was necessary to group similar indicators and score 

them on equal classes but for different threshold values (Table 1).  

 

An indicator of value 0 or 1 indicates low or high spatial variability, respectively (Equation 

(Eq.) 1), of each measured MSFI. 

 

0 ≤ SFI ≤ 1                                                                                                                                (1) 

 

From Eq. 1 above, each indicator was interpreted as a scored value ranging from 0 to 1 based 

on its value from the laboratory analysis results compared with the thresholds of soils from 

unfertilized fields. 

 

In addition to the use of Eq. 1, if soil property µ at a sampled location x is indicated as µ(x) in 

the spatial statistical analysis, the indicator value is used as an estimator of the random 

function µ (x) (Lark & Ferguson, 2004). This shows how an indicator can either be: 

 

 µ(x) ≤ µ(i) or µ(x) ≥ µ(i)                                      (2) 

 

where µ(i) is the threshold value of indicator estimating the SFI. However, in assigning the 

indicator at a sampled location to classes of distribution which are mutually exclusive, it can 

be seen that (Eq. 3): 

 

Prob [µ(x) ≤ µ(i) or µ(x) ≥ µ(i)] = 1/n(c)                              (3) 

 

where n(c) is the number of classes estimated. 
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Scores from each indicator were then converted into single index vales reflecting the SFI by 

multiplying the exponential sum of each scored MSFI divided by the total number of 

indicators by 10 (Eq. 4) (Andrews et al., 2004). Furthermore, the index value was used as a 

representative value of the overall assessment of spatial variability in soil fertility studies of 

the study area.  

 

SFI = (∑
n

i=1
S
j/n) × 10                                                                                                               (4) 

 

where Sj represents the scored indicator index value (probability of indicator in a particular 

class) and n is the number of indicators of MSFI. With n as a divisor, any data in the 

indicators dataset unaccounted for were corrected (Andrews, et al., 2004). The SFI value was 

multiplied by 10 to provide values ranging from 1 to 10 rather than 0 to 1 to make results 

more amenable for producers and other potential users (Andrews, Flora, Mitchell & Karlen, 

2003). 

 

3.5 Analysing spatial data by geostatistical methods 

 

Geostatistical methods of analysing spatial data have been very effective as they give the 

freedom to investigate, describe, determine the pattern of variability, visualise and create 

surfaces from sophisticated statistical methods (Berterretche et al., 2005). Indeed, for studies 

on the fertility of agricultural lands, it is very effective to create statistical continuous surfaces 

to assess the quality of analysis using prediction standard error, probability, quartile and 

standard error of indicator surfaces. Also, it was possible to determine the probability 

threshold contours by creating optimal interpolation surfaces which however can be a form of 

base information on which management schemes of agricultural lands can be based. 

Furthermore, the use of these methods in developing the SFI made it possible to determine the 

probability of variables occurring over the study area where identifying every possible 

indicator value was impossible. As such, it gave us the possibility to average the overall 

spatial variability of the project area.  

The four main basic steps (data representation, exploration, model fitting and diagnostic 

analysis) in analysing spatial data statistically were ensured in creating the interpolated 

surface (Economic and Social Research Institute, 2001). 

 

3.5.1 Geostatistical methods 

 

Developing SFI surface maps by Ordinary Kriging (OK) 

 

Ordinary Kriging (OK) is one of the advanced geostatistical procedures that creates surfaces 

by using spatial correlations from a scattered set of points by incorporating their statistical 

properties (Economic and Social Research Institute, 2001). Hengl, Heuvelink & Rossiter 

(2007) and Hengl et al. (2004) showed that the prediction model by OK is a function of 

weight that depends on the spatial auto correlation and sample data co-ordinates to predict 

unmeasured locations. With the use of OK, there was the need to investigate the spatial data 

structure for distance to measure the strength of statistical correlation. 

 

The mathematical formulas for inverse distance weighted (IDW) and spline interpolation tools 

(Mueller, Mathias, Cornelius, Barnhisel & Shearer, 2004) aided the determination of 

smoothness of our resulting surfaces. OK as a linear least square estimation algorithm and an 

interpolator of values of unmeasured location from measured locations was formed as a 

weighted sum of the data (Eq. 5) 
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                                                                   (5) 

 

where the aim of kriging was to estimate the value of an unknown real-valued function (SFI 

in this case), f, at a point, x
*
, given the values of the function at some other points, xi,...xn, and 

weight λ. A Kriging estimator was said to be linear because the predicted value f ^(x*) is a 

linear combination.  

 

Geostatistical evaluation of SFI values  

 

When analysing and exploring the spatial variability of SFI values in systematic and random 

sampling schemes, it is essential to explore SFI values with a (1) Histogram distribution chart 

to understand and estimate the probability distribution of a continuous variable (in this case 

SFI values), the skewness of the dataset and to obtain a visual impression of the distribution; 

(2) Normal QQ plot to compare the distribution of the data and used as a measure of the 

normality of the dataset; and (3) Trend analysis to spot spatial variability pattern or an 

underlying pattern of behaviour in time and space.  

 

Variography 

 

In fitting a model, which was represented as a diffused dataset underlining a random function, 

we began with a graph of empirical semi-variogram estimated by (Eq. 6) 

 

 

                                                                   (6) 

Where ŷ(h) is the semi-variogram at lag interval h, µ(xi) is the SFI at location xi, N(h) the 

number of pairs of observation in the dataset separated by lag interval h. Hence, spatial 

correlation quantifies a basic principle of geography, meaning a less dissimilar pair must have 

less squared difference and vice versa (Matheron, 1965). 

 

Fitting a model to the empirical semi-variogram 

 

Since information cannot be obtained in all directions and distances and for our predictions to 

have positive variances, it became prudent to represent our empirical semi-variogram with a 

perfectly mathematical model (continuous or curve function). Eq. 6 was used as an estimator 

of the semi-variogram to enable us to fit a model to the semi-variogram cloud and as an 

estimation of the spatial autocorrelation of the datasets (in this case SFI); it became an 

essential key in spatial description and prediction.  

 

Also, due to the distribution of our dataset, trend analysis was again used as an estimator to 

estimate the best model to mathematically represent and describe the distribution of our 

dataset for the prediction (Goodman, 1963). Figure 5 displays an example of an empirical 

semi-variogram with a fitted continuous curve. 
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Fig. 5. An example of an empirical semi-variogram with a fitted continuous curve. 

 

Assessing model or prediction accuracy 

 

In soil fertility assessment, the root mean squared prediction error (RMSPE) which was 

estimated from the mean prediction error (MPE) determines the true prediction accuracy 

(Hengl, et al., 2004) by the validation points µ(xi) (in this case our unobservable indicators) 

with the observable indicators µ^ (xi) as shown in Eq. 7: 

 

 

  

                                                                  (7) 

 

where n represents the validation set which is the number of observations n = 30 for both 

systematic (w pattern) and random sampling schemes.  

Since we were comparing the prediction of two different sampling methods, it was essential 

that the RMSPE be normalized by the total variance of observables (Park & Vlek, 2002). 

Hence the normalized mean square error (NMSE): 

 

 

                                                                  (8) 

 

where S
2
 was the total variance of the transformed observation (SFI at sample points). Hence, 

if Eq. 7 is close to 40%, it is an indication of a fairly satisfactory accuracy prediction (Hengl 

et al., 2004). Hengl et al. (2004) also estimated that, if Eq. 7 > 71%, then the model accounted 

for 50% less at validation points, which would result in unsatisfactory prediction. 

 

Visualisation 
 

Using geostatistics analysis as predictors of SFI, uncertainty was visualized as maps of 

prediction and prediction errors (Hengl et al., 2004), being an estimation of prediction 

uncertainties. Hence the error map was then estimated as the standard error (σ) of the 

predicted index obtained from the observable indicators (SFI) (Eq. 9) (Mukashema, 2007) 

 

 

 

                                                                 (9) 
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Where σ is the standard error of the output pixel estimated, hpi  is the distance between the 

output pixel p of the predicted SFI and input point i (measured SFI), γ is the value of the 

semi-variogram model at distance hpi,Wi is the weight factor for input point (i) and λ is the 

Lagrange multiplier used to minimize estimation error (Mukashema, 2007). 

 

 

4 RESULTS  

 

To re-emphasize and as stated above, the best statistical methods of analysing spatial data 

have not been identified but quantitative assessment has been identified and reported quite 

often (Mukashema, 2007; Bocco, Mendoza & Velázquez, 2001; Lark & Ferguson, 2004; 

Ribeiro Jr & Diggle, 2001; Webster & Mcbratney, 1987). Indeed, our project results indicated 

that different sampling methods behaved spatially differently with regard to SFI. This 

however showed that soil sampling schemes affected the variability of measurements.  

 

The parameters considered were due to the project time frame and therefore many other 

controlling parameters were not considered which would have been of immense benefit to 

improving the results of the project. The results presented below are the results of the 

different sampling methods employed in the field data sampling schemes. 

 

4.1 Evaluation of sampling methods by SFI 

 

4.1.1 Systematic (W pattern) sampling 

 

The results listed in Table 2 indicated differences in the means, medians, standard deviation 

and standard errors of which the results from biomass C (MICc) and total organic carbon 

(TOC) showed different results as compared to the other parameters. MICc had the highest 

standard deviation followed by TOC and KCl NH4
+
; nevertheless, MICc and TOC always had 

high values obtained from the descriptive statistics, which might have been caused by 

unaccounted factors. Also, qCO2 in Table 2 had the lowest standard deviation of 0.02 

followed by pH with 0.24 as standard deviation.  

 

ANOVA (single factor) was used (results shown in Table 3) to analyse the differences in 

indicator means and variances obtained from the fertility indicators of n = 30. Results finally 

indicated that the resultant p value was < 0.001 which meant dataset was significantly 

indifferent as means of several MSFI were almost the same. 

 

 The status of soil fertility indicators, as shown in Figure 6, exhibit how nutrients were 

distributed when the systematic sampling scheme was adopted. However, using this method, 

the fertility indicator distribution was shown and TOC ranged between 424.74 – 1527.72 

mg/kg, pH (4.16 – 4.97), MICc (317.11 – 4525.31 mg/kg), soil moisture (57.66 – 65.12 %), 

C:N ratio (13.4 – 16.1), KCl NH4
+ 

and NO3
-
 (4.7 – 44.9 and 3.55 – 30.80 mg/kg respectively) 

and qCO2 (0 – 0.11 mg/kg biomass).  

 
 

 



UNU Land Restoration Training Programme 

 

17 
 

Table 2. Descriptive statistics of soil parameters from the systematic (W) sampling scheme, n 

= 30. 

Indicators Mean 

Std 

Error Median 

Std 

Dev 

Sample 

Variance Range Min Max 

pH 4.60 0.04 4.62 0.24 0.06 0.81 4.16 4.97 

KCl NH4 mg/kg 17.37 1.76 16.11 9.65 93.09 40.21 4.70 44.92 

KCl NO3 mg/kg 10.96 0.99 10.62 5.41 29.26 27.34 3.55 30.89 

C % 19.31 0.61 19.20 3.33 11.11 12.60 13.10 25.70 

N % 1.31 0.04 1.34 0.20 0.04 0.75 0.93 1.68 

C/N 14.71 0.14 14.55 0.75 0.56 2.70 13.40 16.10 

Moisture % 61.02 0.41 61.20 2.24 5.03 7.46 57.66 65.12 

Biomass C 

mg/kg 2859.33 241.34 3111.54 1321.90 1747408.05 4525.31 0.00 4525.31 

TOC mg/kg 815.67 51.65 807.80 282.88 80021.10 1102.98 424.74 1527.72 

qCo2 mg/kg  0.02 0.00 0.01 0.02 0.00 0.11 0.00 0.11 

 

 

Table 3. ANOVA: Single factor; summary of descriptive analysis ANOVA of systematic (W) 

sampling scheme, n = 30. 

SUMMARY 

Groups Sum Average Variance 

pH 138.19 4.61 0.06 

KCl NH4 mg/kg 521.16 17.37 93.09 

KCl NO3 mg/kg 328.92 10.96 29.26 

C % 579.20 19.31 11.11 

N % 39.38 1.31 0.04 

C/N 441.20 14.71 0.56 

Moisture % 1830.65 61.02 5.03 

Biomass C mg/kg 85779.89 2859.33 1747408.05 

TOC mg/kg 24470.20 815.67 80021.10 

qCo2 mg/kg  0.53 0.02 0.00 

ANOVA 

Source of Variation df F p-value F crit 

Between Groups 9 134.94 <0.001 1.91 

Within Groups 290 

   

     
Total 299       
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Fig. 6. MSFI distribution surface maps by systematic (w pattern) sampling scheme used for 

SFI development. 
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Table 4 shows results obtained by estimating the Coefficient of Variation (CV) based on 

scores obtained from each MSFI and their respective SFI values. The pH had the lowest CV 

of < 0.001% whilst MICc had the highest CV of 15.08% and also the widest range, of 0.8 or 

the same as qCO2. The means and medians of both soil biological parameters and chemical 

values were almost the same but soil moisture and Ctot had equal means and medians. 

Generally, the medians and means of soil biological parameters were greater than the 

chemical values but the pH had the lowest mean and median.  

 

Table 4. Descriptive statistics for systematic sampling scheme based on scores of SFI for each 

MSFI in estimating Coefficient of Variation (CV %), n = 30. 

Indicators Min Max Range Median Mean Std Dev Std Error CV % 

pH  0.40 0.40 0.00 0.40 0.40 <0.001 <0.001 <0.001 

KCl NH4 mg/kg 0.40 0.80 0.40 0.60 0.56 0.10 0.018 5.42 

KCl NO3 mg/kg 0.60 1.00 0.40 0.80 0.71 0.11 0.021 8.11 

C % 0.80 0.80 0.00 0.80 0.80 <0.001 <0.001 <0.001 

N % 0.40 0.80 0.40 0.80 0.79 0.07 0.013 5.75 

C/N  0.60 0.80 0.20 0.60 0.61 0.04 0.007 2.22 

M %  0.80 0.80 0.00 0.80 0.80 <0.001 <0.001 <0.001 

MICc mg/kg  0.00 0.80 0.80 0.80 0.73 0.21 0.038 15.08 

TOC mg/kg 0.60 0.80 0.20 0.80 0.73 0.10 0.018 7.12 

qCO2 mg/kg 0.00 0.80 0.80 0.60 0.57 0.16 0.030 8.97 

 

4.1.2 Random sampling 

 

From Table 5, results did not show much difference as compared to the systematic (w pattern) 

method but rather had quite significant differences in the means, medians, standard deviations 

and standard errors of which MICc, KCl NO3
-
 and TOC showed different results as compared 

to the other parameters. MICc also had the highest standard error in this sampling scheme 

followed by TOC and KCl NO3
-
, generally, TOC and MICc also had the highest values in 

results obtained from the descriptive statistics. Also, qCO2 in Table 5 had the lowest standard 

deviation of 0.03 followed by Ntot with a standard deviation of 0.20.  

Table 5. Descriptive statistics of random sampling scheme, n = 30. 

 

Mean 

Std 

Error Median Std Dev 

Sample 

Variance Range Min Max 

pH 4.38 0.06 4.33 0.31 0.09 1.26 3.95 5.21 

KCl NH4 mg/kg 12.10 1.24 9.48 6.70 44.88 28.85 4.58 33.43 

KCl NO3 mg/kg 69.55 4.31 70.986 23.23 539.55 118.43 5.66 124.09 

C % 19.44 0.61 19.30 3.31 10.94 12.60 13.10 25.70 

N % 1.32 0.03 1.37 0.20 0.04 0.75 0.93 1.68 

C/N 14.74 0.14 14.60 0.74 0.55 2.70 13.40 16.10 

moisture % 56.39 0.98 57.09 5.28 27.87 22.90 40.09 62.99 

Biomass C mg/kg 976.71 106.99 902.01 576.17 331973.53 2854.10 0.00 2854.10 

TOC mg/kg 1006.19 56.54 966.41 304.49 92715.64 1452.39 209.04 1661.43 

qCO2 mg/kg biomass 0.05 0.00 0.05 0.03 0.00 0.11 0.00 0.11 
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The results of ANOVA (single factor) in Table 6 also showed a p-value below 0.05 just as for 

the systematic sampling scheme as was evidenced by the almost equal means of several MSFI 

used. Figure 7 shows how nutrients were distributed over the study area. The MICc ranged 

from 246.53 – 2854.10 mg/kg, TOC ranged from 209.04 – 1661.43 mg/kg, pH ranged from 

3.95 – 5.21, soil moisture from 40.09 – 62.99 %, C:N ratio ranged from 13.4 – 16.1, KCl 

NH4
+
 and NO3

-
 ranged from 4.57 – 33.43 and 5.55 – 124.09 mg/kg respectively, and qCO2 

ranged from 0 – 0.11 mg/kg biomass. However, the C:N ratio and qCO2 showed the same 

values from the surface maps even though they were obtained with different sampling 

methods and points.   

 

Table 6. ANOVA: Single factor; summary of descriptive analysis ANOVA of random sampling 

scheme, n = 30. 

SUMMARY 

   Groups Sum Average Variance 

pH 127.15 4.38 0.09 

KCl NH4 mg/kg 350.79 12.10 44.88 

KCl NO3 mg/kg 2016.87 69.55 539.55 

C % 563.80 19.44 10.94 

N % 38.26 1.32 0.04 

C/N 427.40 14.74 0.55 

moisture % 1635.23 56.39 27.87 

Biomass C mg/kg 28324.71 976.71 331973.53 

TOC mg/kg 29179.50 1006.19 92715.64 

qCO2 mg/kg biomass 1.57 0.05 0.00 

ANOVA 

 Source of Variation df F p-value F crit 

Between Groups 9 114.27 <0.001 1.91 

Within Groups 280 

   

     Total 289       
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Fig. 7. MSFI distribution surface maps by random sampling scheme used for SFI 

development. 
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Table 7 also shows the results obtained by estimating the Coefficient of Variation (CV) as 

estimated in the systematic sampling scheme. The pH with the lowest CV in the systematic 

sampling scheme was not the lowest in the random sampling scheme but rather KCl NO3
-
 had 

the lowest CV of 8.36% whilst MICc also had the highest CV of 25.52%, which was an 

indication of low to high spatial variability in the dataset.  MICc and qCO2 also had the widest 

range of 0.8. However, means and medians of both soil biological parameters and chemical 

values were quite close though KCl NO3
-
 had the highest median. It was also observed that 

the median and means of soil biological parameters were greater than the chemical values 

whereas the mean of KCl NO4
+
 was lower than its median. 

 

Table 7. Descriptive statistics for random sampling scheme based on scores of SFI for each 

MSFI in estimating Coefficient of Variation (CV), n = 30. 

Variable Min Max Range Median Mean Std Dev Std Error CV 

pH  0.20 0.60 0.40 0.40 0.40 0.08 0.01 18.90 

KCl NH4 mg/kg 0.40 0.80 0.40 0.40 0.51 0.13 0.02 24.75 

KCl NO3 mg/kg 0.60 1.00 0.40 1.00 0.98 0.08 0.02 8.36 

C % 0.80 0.80 0.00 0.80 0.80 <0.001 <0.001 <0.001 

N % 0.80 0.80 0.00 0.80 0.80 <0.001 <0.001 <0.001 

C/N  0.40 0.80 0.40 0.60 0.61 0.07 0.01 12.10 

M %  0.60 0.80 0.20 0.80 0.77 0.07 0.01 9.09 

MICc mg/kg  0.00 0.80 0.80 0.80 0.68 0.17 0.03 25.52 

TOC mg/kg 0.40 0.80 0.40 0.80 0.75 0.11 0.02 14.17 

qCO2 mg/kg 0.00 0.80 0.80 0.60 0.61 0.14 0.03 22.42 

 

4.2 Comparison of sampling methods 

 

Pearson’s correlation was used to examine the degree of association between the MSFIs 

within the sampling schemes. Since multiple measurement variables (in this case the MSFI) 

for each sample plot were used in determining SFI values, each SFI value was affected by the 

determinant Pearson’s coefficient. 

 

In view of this, it was then estimated that the different surface distribution maps obtained by 

the different sampling schemes were due to the positive or negative correlation coefficients 

between measured MSFI values as KCl NH4
+
 and qCO2 gave the lowest coefficient of 0.03 

with Ctot and Ntot having the highest coefficient of 0.96, as indicated in Table 8.  

 

In Table 9 the correlation between soil moisture and MICc gave the lowest coefficient of < 

0.001 but Ctot and Ntot also gave the highest coefficient of 0.96, as in Table 8. This indicated 

however how each MSFI correlated with each other in estimating the spatial variability of 

both sampling schemes. From Figures 6 and 7, it can be seen that less variation in sampling 

schemes from MSFI distribution surface maps was observed as the range of soil pH in 

systematic sampling scheme was 0.81 compared to 1.26 in the random sampling scheme. 

Upon evaluating the overall distribution maps in Figures 6 and 7, it was seen that there was 

less spatial variation in the systematic sampling scheme than in the random sampling scheme.  
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Table 8. Pearson’s correlation coefficients of MSFI obtained by systematic (W pattern) 

sampling scheme. 

 
pH 

KCl 

NH4 

mg/kg 

KCl 

NO3 

mg/kg C % N % C/N 

Moisture 

% 

MICc 

mg/kg 

TOC 

mg/kg 

qCO2 

mg/kg 

pH 1 -0.25 -0.17 -0.55 -0.52 -0.34 -0.78 0.59 -0.72 -0.47 

KCl NH4 mg/kg 

 

1 0.38 0.25 0.34 -0.18 0.31 -0.02 -0.10 0.03 

KCl NO3 mg/kg 

  

1 -0.09 0.02 -0.36 0.25 0.16 -0.26 0.29 

C % 

   

1 0.96 0.52 0.46 -0.35 0.58 0.15 

N % 

    

1 0.26 0.49 -0.25 0.45 0.19 

C/N 

     

1 0.08 -0.48 0.65 -0.07 

moisture % 

      

1 -0.38 0.55 0.45 

MICc mg/kg 

       

1 -0.57 -0.44 

TOC mg/kg 

        

1 0.14 

qco2 mg/kg  

         

1 

 

 

Table 9. Pearson’s correlation coefficients of MSFI obtained by random sampling scheme 

 
pH 

KCl 

NH4 

mg/kg 

KCl 

NO3 

mg/kg C % N % C/N 

Moisture 

% 

MICc 

mg/kg 

TOC 

mg/kg 

qCO2 

mg/kg  

pH 1 0.07 -0.71 -0.37 -0.28 -0.46 -0.53 0.22 -0.81 0.37 

KCl NH4 mg/kg 

 

1 0.05 0.05 0.02 0.06 0.18 -0.14 0.14 0.39 

KCl NO3 mg/kg 

  

1 0.26 0.26 0.16 0.56 0.03 0.59 -0.19 

C % 

   

1 0.96 0.50 0.11 -0.33 0.39 0.20 

N % 

    

1 0.23 0.08 -0.23 0.32 0.20 

C/N 

     

1 0.18 -0.36 0.42 -0.01 

Moisture % 

      

1 <0.001 0.80 -0.22 

MICc mg/kg 

       

1 -0.22 -0.39 

TOC mg/kg 

        

1 -0.34 

qCO2 mg/kg  

         

1 

 

 

Lastly, Figure 8 shows the CVs of both sampling schemes as an indication of how each 

measured MSFI contributed to spatial variation depending on the sampling scheme employed. 

The MICc and KCl NH4
+
 of the random sampling scheme depicted higher CV values and 

generally the random sampling scheme had higher CVs than did the systematic sampling, 

showing that there was lower spatial variability in the systematic sampling scheme than in the 

random sampling scheme (Cambardella et al., 1994; Wilding, 1985).  

 



UNU Land Restoration Training Programme 

 

24 
 

 

Fig. 8. A graph of coefficient of variation against MSFI, showing how each measured MSFI 

contributes to spatial variability depending on sampling scheme adopted. 

 

4.3 Integration of MSFI into SFI 

 

From Eq. 1 through 4, SFI was computed from the integrated scored MSFI and used for the 

development of the surface distribution maps, thus evaluating the sampling schemes in the 

soil fertility studies. 

 

A graph of SFIs against each MSFIs shows the relationship or contribution each MSFI had in 

estimating the SFI values, as shown in Figures 9 and 10. These cluster values of irregular 

intervals were explained by a linear regression trend (equation in charts) and the multiple 

determination coefficient (R
2
) values. 

 

Also, Figure 9 shows that linear regression trends of all MSFI in the systematic (w pattern) 

sampling were uniformly contributed and quite equal whereas the pH, C:N ratio and TOC had 

negative gradients in SFI estimation, indicating a considerably lower contribution as 

compared to the positive gradient trends. R
2
 values for KCl NO3

-
 and MICc were bigger than 

other contributing MSFIs. In the graph of C:N ratios against SFIs, the clusters of values were 

less diffuse as compared to the other MSFIs, indicating less variation in class scoring. 

 

Furthermore, Figure 10 also indicates that the regression trends of all MSFIs in the random 

sampling were also uniformly contributed but TOC had a negative gradient in the SFI 

estimation. Since it was just a single parameter that had a negative gradient its contribution 

was deemed insignificant with far less R
2
 as compared to other positive gradient MSFIs.  

0 

5 

10 

15 

20 

25 

30 

pH KCL 

NH4  

NKCL 

NO3  

C % N % C/N  M %  MICc 

mg/kg 

TOC 

mg/kg 

qCO2 

mg/kg 

C
o

ef
fi

ci
en

t 
o

f 
V

a
ri

a
ti

o
n

 (
C

V
) 

%
 

MSFI 

A Graph of CV against MSFI 

Systematic 

Random 



UNU Land Restoration Training Programme 

 

25 
 

 

Fig. 9. Effect and contribution of each MSFI in estimating SFI values from systematic (w 

pattern) sampling method. 
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Fig. 10. Effect and contribution of each MSFI in estimating SFI values from random sampling 

method. 
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4.4 Geostatistical analysis of SFI 

 

Since spatial variability of SFI values varies in both space and time, it is essential to analyse 

SFI values with a tool that provides statistical models, spatial data exploration and surface 

model generation. Using geostatistical analysis of SFI values can provide optimal statistically 

and mathematically valid prediction surface maps and depict all dataset uncertainties for 

improved decision making. Also, behaviour patterns (trend) and spatial relationships (bias and 

unbiased dataset) can be noted and dealt with accordingly as such simulating can be done on 

any possible factors that affect realizations of better predicted surfaces.  

 

4.4.1 SFI values exploration with default parameters 

 

In order to make better decisions, it was essential to explore the SFI data structure. Errors that 

might affect the output prediction, the distribution, trend and examination of the spatial 

autocorrelation were all examined.  In this case, different sampling schemes were used as 

covariates in estimating the best explanatory potential of spatial variability in the project area 

(Economic and Social Research Institute, 2001). From Figure 11, the distribution of the SFI 

values were depicted in the histogram with the range of values plotted in 10 classes. However, 

the means and the medians of both sampling methods were quite close, indicating that the 

data may be normally distributed.  

 

 

 

Fig. 11. Histogram distribution of SFI values in both systematic and random sampling 

methods. 

 

Moreover, the quantile-quantile (QQ) plot was then used to compare the distribution of the 

data to a standard normal distribution which was then used as another measure of the 

normality of the data. From Figure 12, it was certain the data were not following a normal 

distribution since most of the points were not closer to the 45 degree line in the graph. 
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Fig. 12. Normal QQ plot of SFI values showing deviation from the normal 45degree curve. 

 

Before a model could be fitted to our empirical semi-variogram cloud, it was essential to 

estimate the best mathematical formula that could depict the true representation of the data, as 

such; in other words trend analysis was necessary. A third-order polynomial was used to 

produce the representation of the surface, as shown in Figure 13. 

 

However, from the green line (XZ plane) in the random sampling (Figure 13a), it started from 

a high value and then decreased as it approached the centre of the distribution and then 

increased upward along the x-axis. Similarly, the blue trend line (YZ plane) (Figure 13a) also 

starts with a lower value and increased upward but decreased when approaching the centre of 

the distribution and afterwards rose abruptly whilst the trend analysis in the systematic 

sampling scheme was like that which was depicted in the random sampling scheme. This was 

also an indication of the presence of a strong trend in the dataset from the centre of the 

distribution. 

 

 

Fig. 13. Trend analysis of SFI values indicating SFI trend in XZ plane (green line) and YZ 

plane (blue line).  

 

Lastly, Eq. 6 was then used to examine the spatial autocorrelation between measured sample 

points. Pairs of locations were represented, as shown in Figure 14, and it was realised that as 

the distance between pair locations increased (high values on the x-axis), there was a similar 

pattern of increase (high values on the y-axis) indicating a sort of correlation among the 

dataset which was also shown in Tables 8 and 9. 
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Fig. 14. Semi-variogram cloud of SFI values from systematic and random sampling methods. 

 

4.4.2 Mapping SFI Values with OK 

 

The OK interpolation method is quite dynamic but with a less stringent assumption about 

model fitting, but to make better prediction from our dataset it was essential to incorporate 

trend removal and anisotropy in the dataset modelling (Economic and Social Research 

Institute, 2001).  

 

Due to the uncertainties obtained in the dataset, it became handy to remove the trend in the 

dataset and model the residuals. Third order trend removal was applied because of the 

perfectively mathematical trend used in the trend analysis from Figure 13, but the trend was 

added back to the dataset in the final surface development. From Eq. 6 the Gaussian model 

was then used as a kernel function to fit the model to the semi-variogram cloud (Goodman, 

1963). 

 

Also, before we could account and adjust for the directional influence of autocorrelation in the 

output surface, it was essential to calculate the anisotropical covariance model. The nugget 

(measurement error and/or the microscale variation) was not measured since we did not 

collect a multiple dataset from the same location or sampling points.  

The model fitted to the semi-variogram cloud depicted the SFI of the study area but it was 

realised that, TOC, MICc and KCl extractables were contributing factors to the lower results 

obtained from the model statistics. 
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From Figure 15, the cross-validation results informed us about the development of the models 

and was an indication of which model best suited our semi-variogram cloud and for predicting 

unknowns (unobservable MSFI).  Figure 16 shows the surface map that resulted from the two 

sampling methods using OK, followed by Figure 17 showing the prediction standard errors 

from the surfaces. This quantified the uncertainty for each location (in this case the MSFI) 

and predicted location in the surface maps from Figure 14. 

 

 

Fig. 15. Cross-validation of SFI values from random and systematic sampling indicating the 

deviation of SFI values from the normal 45 degree curve. 
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Fig. 16. SFI surface maps developed by OK with sampling points, n = 30. 
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Fig. 17. SFI prediction standard error surface maps developed by OK with sampling points, n 

= 30. 
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5 DISCUSSION 

 

Since two different sampling schemes were used in spatial data collection, it was essential to 

use geostatistical analysis techniques to evaluate the outcomes and to estimate or make better 

predictions about spatial variability of MSFI in soil fertility studies. The MSFIs were then 

converted into SFIs and the results will be discussed in detail below. It was realised that, to 

obtain a better prediction and results, more parameters (topography, soil mapping units 

(SMU), a digital elevational model (DEM), satellite images, and an LULC dataset etc.) 

needed to be included and more datasets taken for each sample location or sampling point. 

However, the sample points and parameters used were able to confirm some of the results 

obtained by (Guicharnaud, 2010).  

 

5.1 Systematic (w) pattern sampling and random sampling method 

 

The different sampling methods had a significant effect on the output measurements, as others 

have observed (Guicharnaud, 2010; Lambkin, Nortcliff & White, 2004). It was also 

concluded that random sampling was less effective in estimating soil property variability than 

systematic sampling.  This finding is consistent with what other researchers have found (Scull 

& Okin, 2007; Wang & Qi, 1998; Guicharnaud, 2010). From Tables 2 and 5, it is clear that 

there were some outliers in the dataset, especially MICc, TOC and KCl extractables. Outliers 

could have been catered for if multiple datasets had been collected at the same location during 

sampling. Other than this, both approaches depicted a good estimation of spatial structure 

variability in the project area and the results presented support the conclusion of Guicharnaud 

(2010).  

 

When the normal QQ plot from Figure 15 was observed, most points of systematic (w pattern) 

sampling were closer to the 45 degree line, which is an indication of the prediction error being 

normally distributed as compared to the random sampling method. As such, the incorporation 

of the anisotropic semi-variogram took into consideration the global trend and adjusted for the 

local directional influence that may have affected data sampling in the random sampling 

method.  

 

There is a rule of thumb that to judge if the model provides an accurate prediction: (1) the 

predictive mean should be close to 0 and from our sampling methods, random sampling gave 

a mean of 0.244 and systematic (w pattern) gave 0.07 which, indicating unbiased prediction; 

and (2) the root-mean-square standardized prediction error should be close to 1, random 

sampling also gave 1.8 and systematic sampling 1.31.  

 

From the above discussion, there existed a pattern (trend) where results from the systematic 

(w pattern) sampling were always better than the results from the random sampling method. 

These results support the results obtained by Guicharnaud (2010). 

 

5.2 Comparing models 

 

Finally, in order for us to make an informed decision as to which model provided more 

accurate prediction spatial variability of SFI in the study area, it became handy to compare the 

obtained models based on the cross-validation statistics.  

 

From Figure 18, a graph of predicted SFI against measured SFI in the systematic (w pattern) 

exhibited a negative gradient of the linear regression curve whilst the random sampling had a 
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positive linear regression gradient. However, this was an estimation of how the mean 

standardized error approached 0.  

 

 

 

Fig. 18. Cross-validation of predicted and measured SFI. 

 

This showed that the systematic sampling depicted a better spatial variability of SFI, as is 

supported by the graph of standardized error of the predicted SFI against measured SFI in 

Figure 19 below.  

 

 

Fig. 19. Cross-validation of standardized error of predicted and measured SFI. 

 

Furthermore, Figure 8 indicated that there was less spatial variability in systematic sampling 

than in random sampling schemes as the CVs in systematic sampling were always lower than 

in the random sampling scheme. According to Cambardella et al. (1994) and Wilding (1985), 

CVs less than 15% indicate low spatial variability, 15-35% moderate and > 35% high spatial 

variability. Therefore the highest CV of 25.25% in the random sampling scheme indicated 

moderate spatial variability whilst highest the CV of 15% in the systematic sampling also 

indicated low spatial variability and hence an estimation of better sampling in estimating 

spatial variability of soil nutrients in soil fertility studies.   
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5.3 Probability of SFI exceeding thresholds 

 

In making better decisions on how to advise farmers on nutrient distribution, care must be 

taken to ensure consistency and understand the uncertainty of the prediction. Using a 

predicted SFI map as a basis for making recommendations is quite helpful but less valid. To 

circumvent this challenge, it was essential to determine the threshold for the measured SFIs 

from Eq. 4. 

  

From Table 1, the threshold upon which the measured MSFIs were scored was 78. SFI values 

ranged from 64 to 84 for specific locations but due to the uncertainties associated with the 

prediction, true SFI values may or may not be in the ranges stated above.  

 

To buttress recommendations on spatial variability of soil fertility studies, the probability of 

the SFI exceeding the threshold value of 78 must be mapped out to ensure that a less spatial 

variability sampling scheme is adopted in fertility status studies in the project area.  Figure 20 

below then showed areas of combined MSFI values where the SFIs were above the required 

threshold of the area. Also, areas of blue threshold contour lines were an indication of high to 

extreme SFI values regions and green regions indicated moderate to low SFI values. 

However, threshold contours were used to delineate areas above (high, 1) or below (low, 0) 

the threshold value estimated for predicting the probability of spatial variability of soil 

parameters, as shown in Figure 20. 

 

Furthermore, a standardized mean of -0.036 and -0.057 and an average standardized error of 

0.31 and 0.58 were obtained for systematic and random sampling, respectively. These figures 

then buttressed the rule of thumb stated above when accessing predicted surface models. This 

added information aids site specific farming to know where much or little effort needs to be 

concentrated, in terms of soil fertility management schemes and studies. 

 

Lastly, the parameters used (soil pH, total organic carbon (Ctot), total organic nitrogen (Ntot), 

potassium chloride (KCl) extractable NH4
+
-N and NO3

-
-N, soil microbial biomass C (MICc), 

soil metabolic quotient (qCO2), C:N ratio and temperature and rainfall data) are also estimated 

and used for other research at CSIR-SRI and the Institute is equipped with the necessary 

software used in this study which can therefore also be used in other such projects as executed 

here in Iceland, incorporating all the interpolation techniques used. 
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Fig. 20. Probability map showing area of extreme threshold SFI values as an indication of 

soil spatial variability in soil fertility studies. 
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6 CONCLUSIONS 

 

The project was successfully executed and our objective was realised. The development of 

information in our day to day land management activities can be of immense benefit in field 

management schemes if detailed studies are conducted. Policy makers in agricultural sectors 

will be enabled to get the actual facts necessary on which to base feasible decisions. 

 

GIS was very useful and made analysis and handling of spatial data easy, as series of data 

iteration were made possible. It was realised that in studies like this, more sampling data must 

be taken per sample point and other parameters be measured and included to enhance the 

results for better predictions and a more effective decision making process. 

 

The findings strongly suggest that the systematic sampling scheme is better used in estimating 

spatial variability of soil properties in fertility studies than the random sampling scheme. 

Indeed, coefficients of variation obtained from both sampling methods of project results in 

estimating the soil fertility index strongly support this conclusion.  

  

Finally, GIS probability maps can be of immense benefit in soil fertility management and 

assessments when land users and farmers want to evaluate their fields in terms of spatial 

variability and soil fertility studies. This can ensure where resources need to invested.  

 

On this note, it was realised that a GIS based probability map in spatial variability and fertility 

studies has outlined an effective option of implementing improved nutrient management in 

large tracts, enabling the development of appropriate and sound agricultural management 

recommendations. 
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APPENDIX 

 

List of abbreviations 

ANOVA    Analysis of Variance 

CLORPT  Climatic, Organisms, Relief, Parent material and Time 

CSIR   Council for Scientific and Industrial Research 

GIS    Geographic Information System 

LULC   Land Use Land Cover 

LRT   Land Restoration Training 

MPE    Mean Prediction Error 

MSFI   Minimum Soil Fertility Indicators 

NMSE   Normalized Mean Square Error 

OK    Ordinary Kriging 

RK    Regression Kriging 

RMSPE   Root Mean Square Prediction Error 

SFI    Soil Fertility Index 

SMU    Soil Mapping Units 

SRI   Soil Research Institute 

UNU   United Nations University 

VRT    Variable Rate Technology 

 


